Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Thomas M. Klapötke,* Burkhard Krumm and Ingo Schwab

Department of Chemistry and Biochemistry, Ludwig-Maximilian University, Butenandtstrasse 5–13 (Haus D), D-81377 Munich, Germany

Correspondence e-mail: tmk@cup.uni-muenchen.de

Key indicators

Single-crystal X-ray study T = 200 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.031 wR factor = 0.073 Data-to-parameter ratio = 22.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(dimethylphenylsilyl)methanetellurenyl iodide

The crystal structure of TpsiTeI [Tpsi = tris(dimethylphenylsilyl)methyl], $C_{25}H_{33}ISi_3Te$, exhibits discrete molecules without Te···I, Te···Te or I···I intermolecular contacts. TpsiTeI was prepared by cleavage of its parent ditellane with iodine, and represents a kinetically stabilized alkanetellurenyl iodide with a very bulky substituent. The molecule possesses an angular C-Te-I arrangement [110.53 (7)°] with a Te-I single bond [2.7178 (7) Å]. Received 25 October 2005 Accepted 1 November 2005 Online 10 November 2005

Comment

During the course of our investigations of organotellurenyl azides (Klapötke, Krumm, Nöth *et al.*, 2005), we were able to determine the crystal structure of the benzenetellurenyl iodide Mes*TeI (Klapötke, Krumm & Schwab, 2005) and the alkanetellurenyl derivative TpsiTeI, (I) (Fig. 1).

As can be seen, the crystal structures of both compounds feature kinetically stabilized monomers; neither the Te nor the I atoms show intermolecular secondary interactions.

The Te-I bonds in (I) and Mes*TeI (Klapötke, Krumm & Schwab, 2005) are very similar [2.7178 (7) versus 2.7181 (6) Å]; however, a large difference is found in the C-Te-I angles [110.53 (7) versus 95.75 (8)°]. This can be attributed to the increased bulkiness of the trisilylmethyl compared to the 2,4,6-tri-*tert*-butylphenyl substituent. In between these two, the steric influence of the terphenyl derivative 2,6-Trip₂C₆H₃TeI [Te-I = 2.617 (1) Å and C-Te-I = 106.2 (2)°] can be estimated (Klapötke, Krumm, Nöth *et al.* 2005).

Experimental

To a green solution of 0.28 mmol bis[tris(phenyldimethylsilyl)methyl] ditellane (TpsiTe)₂ (Klapötke, Krumm, Nöth *et al.* 2005) in 10 ml of benzene were added 0.23 mmol of neat iodine. After stirring for 1 h at ambient temperature, the dark-blue–green solution was evaporated *in vacuo*. Recrystallization at 277 K from n-pentane yielded dark-green blocks of TpsiTeI after several days.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Crystal data

C25H33ISi3Te
$M_r = 672.28$
Monoclinic, $P2_1/c$
a = 16.076 (3) Å
b = 17.248 (3)Å
c = 9.995 (2) Å
$\beta = 101.18 \ (3)^{\circ}$
$V = 2718.9 (9) \text{ Å}^3$
Z = 4

Data collection

Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: none
12153 measured reflections
6229 independent reflections
4995 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0278P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.031$	+ 1.9905P]
$wR(F^2) = 0.073$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.002$
6229 reflections	$\Delta \rho_{\rm max} = 0.79 \ {\rm e} \ {\rm \AA}^{-3}$
277 parameters	$\Delta \rho_{\rm min} = -1.35 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

 $D_x = 1.642 \text{ Mg m}^{-3}$

Cell parameters from 6375 reflections $\theta = 3.1-27.5^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 2.37 \text{ mm}^{-1}$

T = 200 (2) K

 $R_{\rm int} = 0.023$

 $\theta_{\rm max} = 27.5^{\circ}$ $h = -20 \rightarrow 20$

 $k = -22 \rightarrow 21$

 $l = -12 \rightarrow 12$

Block, dark green $0.08 \times 0.05 \times 0.04 \text{ mm}$

Table 1

Selected geometric parameters (Å, °).

I1-Te1	2.7178 (7)	Si2-C10	1.870 (3)
Te1-C1	2.212 (3)	Si2-C12	1.888 (3)
Si1-C2	1.869 (3)	Si2-C1	1.917 (3)
Si1-C3	1.870 (3)	Si3-C18	1.866 (3)
Si1-C4	1.898 (3)	Si3-C19	1.880 (3)
Si1-C1	1.942 (3)	Si3-C20	1.892 (3)
Si2-C11	1.865 (3)	Si3-C1	1.925 (3)
C1-Te1-I1	110.53 (7)		

H atoms were placed in geometrically idealized positions (C–H = 0.95 Å and 0.98 Å for aromatic CH and methyl groups, respectively) and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$. The methyl groups were allowed to rotate but not to tip. The highest residual electron density is located 0.96 Å from Te1 and the deepest hole is located 0.75 Å from I1.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* and *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1996); software used to prepare material for publication: *SHELXL97*.

Figure 1

Drawing of the molecule of (I) in the crystal structure, with displacement ellipsoids drawn at the 40% probability level. H atoms have been omitted.

The authors thank Dr P. Mayer for data collection and the Ludwig–Maximilian University for financial support of this work.

References

Brandenburg, K. (1996). DIAMOND. University of Bonn, Germany.

Klapötke, T. M., Krumm, B., Nöth, H., Galvez-Ruiz, J.-C., Polborn, K., Schwab, I. & Suter, M. (2005). *Inorg. Chem.* 44, 5254–5265.

Klapötke, T. M., Krumm, B. & Schwab, I. (2005). Acta Cryst. E61, o4045o4046.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.